2. 中国地质大学 (北京), 北京 100083;
3. 中国地质科学院矿产资源研究所, 北京 100037
2. China University of Geosciences, Beijing 100083, China;
3. Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
[Objective] Luanchuan County is a typical molybdenum mining area in China. It is of great significance to figure out the pollution status of heavy metals in the agricultural soil around the molybdenum mining area for regional environmental prevention, mine ecological restoration and sustainable development of mining industry. [Methods] This study collected 54 topsoil samples from the agricultural land in Chitudian Town around the typical molybdenum mining area. The concentrations of Cd, Cu, Zn, Pb, Hg, As, Cr and Ni were analyzed for obtaining the spatial distribution characteristics of these heavy metals, and the heavy metal pollution, ecological risk and human health risk was evaluated by the geo-accumulation index method, potential ecological risk index method and health risk index method, respectively. [Results] Compared with the risk screening values for soil contamination of agricultural land, Cd, Cu, Zn and Pb are the main elements exceed the standard values, As concentrations in a few samples exceeds the standard values, and the concentrations of Hg, Cr, Ni in all the samples did not exceed the standard values. The spatial distribution characteristics showed that area A (around the molybdenum mining area) is the main distribution area with high concentrations of Cd, Cu, Zn and Pb, which decreased gradually with the increase of distance. The order of percentages of sample sites with heavy metal concentrations exceeding the risk screening values is area A> area B> area C. According to the values of geo-accumulation indices based on background values for heavy metals in topsoil of Henan Province, the pollution levels for Hg, As, Cr and Ni in the soils were between unpolluted to moderately polluted, and the pollution level of Cd was moderate to heavy polluted, while the pollution levels of Cu, Zn and pollution level of Pb is between moderately polluted to strongly polluted. Light to heavy degree, showing the order of pollution degree are Cd > Pb > Zn > Cu and area A> area B>area C; In terms of potential ecological risk, study area shows slight ecological risk, where the risk in area A is higher than that in other areas (B and C), and Cd posed most highest risks. The non-carcinogenic health risk index is less than 1, with the order of Cr > As > Pb > Ni > Cd > Cu > Zn > Hg, and the carcinogenic health risk index is less than 1×10-4, with the order of Ni > Cr > As > Cd, which is an acceptable risk level. The carcinogenic and non-carcinogenic health risk indexes for children are higher than those for adults. [Conclusions] The pollution of heavy metals (Cd, Cu, Zn and Pb) in the agricultural soil around the molybdenum mining area was existing, reaching the levels of moderate to strong pollution, but the overall ecological risk is low, and the risks of non-carcinogenic and carcinogenic health were within an acceptable range. Children are more sensitive and vulnerable to heavy metals, so it is necessary to strengthen the protection for the children.
土壤是地表基质的重要组成部分,是人类生存的载体,不仅为人类生产生活提供必须的物质基础,还担负着人类生存的环境功能,一旦土壤环境遭到破坏,其正常功能必将受到影响,进而通过土壤-植被-人体之间的物质迁移转化过程影响人类健康生活和安全发展(李春芳等,2018)。当前,矿产资源开发在推动社会经济发展的同时也会对矿区周边的生态环境(如大气、水体和土壤等)造成不同程度的破坏,在污染严重地区不仅粮食安全和生产活动受到威胁,甚至还会引发生态事件(余涛等,2021)和重大疾病,例如由Cd污染导致的痛痛病,Hg污染引起的水俣病,Pb、As、Cr等重金属在人体内积累也会破坏人体的神经系统和消化系统,从而会引发皮肤癌、膀胱癌等疾病(刘洋等,2022)。由于土壤遭受的重金属污染具有隐蔽性、不可逆性和难治理性,会长期对周边人群造成潜在健康隐患(蔡奎等,2016;邬光海等,2020;程贤达等,2022),从而被国内外学者重点关注和广泛研究(张江华等, 2019, 2020;鲍丽然等,2020;Zhang and Wang, 2020;陈航等,2022)。重金属进入土壤后可以长期存在并不断积累,通过植物进入食物链迁移富集,危害人体健康,因此对土壤重金属污染评价及其健康风险进行评估具有重要意义。
河南省洛阳市栾川县矿产资源丰富,钼矿储量居亚洲第一,世界第三,素有“中国钼都”之称,矿产资源的开发利用给栾川经济的发展奠定了良好的基础,但也对周边环境造成了影响,对当地的生态环境和人体健康产生了隐患(Chen et al., 2023)。本研究以栾川县钼矿集中开采区下游赤土店镇北沟河流域沿岸农田土壤为研究对象,分析其重金属污染现状,评价潜在生态风险和人群健康风险,以期为区域环境污染防治和居民健康评估提供科学依据。
2 研究区概况栾川县钼矿区位于河南省西部、东秦岭钼多金属成矿带的东端,大地构造上处于华北克拉通南缘,栾川大断裂北侧(图 1),区域性断裂构造主要发育北西西向组,北北东向组次之(唐灿辉等,2015)。钼矿区主要由南泥湖、三道庄、马圈三个特大型斑岩型-矽卡岩型钨钼伴生矿床组成,矿区出露地层主要为中元古界官道口群燧石条带大理岩和新元古界栾川群碳酸盐岩、碎屑岩,赋矿地层主要为栾川群受燕山期酸性—中酸性岩浆侵入影响而发生热接触变质作用而形成的南泥湖组中段的黑云母长英角岩、阳起石透辉石长英角岩,以及三川组中段的斜透角岩和矽卡岩(杨永飞等,2009),主矿化阶段为石英硫化物阶段,普遍形成大量辉钼矿、黄铁矿以及少量黄铜矿、方铅矿等金属矿物,与石英、钾长石、方解石形成细脉(瓮纪昌等,2010;李婉宁,2022)。
![]() |
图 1 栾川北部钼矿区矿产地质简图(据唐灿辉等,2015) Fig. 1 Geological map of molybdenum (Mo) deposits in northern Luanchuan (after Tang Canhui et al., 2015) |
研究区位于南泥湖—三道庄典型钼矿区南东侧赤土店镇(图 2a),属中低山区,总体地势为北西高,南东低,南北高,中间低,呈北西-南东走向沟谷地貌,南北两侧山区均为林地,中部沟谷为居民区、农田以及交通分布区。区域河流为北沟河,沿赤土店中部沟谷,向南东汇入黄河支流伊河水系。区内钼矿主要分布在赤土店镇北沟河上游源头区域,钼矿尾矿库主要分布在北沟河中上游两岸沟谷,农田分布在北沟河沿岸和西侧无水系沟谷道路两侧,均为旱地,土壤类型为浅灰色含砾砂质壤土,以种植玉米、小麦、葡萄等作物为主。村庄主要分布在北沟河中下游及其西侧交通干道两侧,北沟河下游由于临近栾川县城,沿途各村人员密集,人口较多。地区经济以矿业开采、加工选冶为主,农业为辅,北沟河下游主要为旅游业、餐饮、住宿等服务业。
![]() |
图 2 研究区地貌(a)与采样位置图(b) Fig. 2 Geomorphology (a) and sampling sites (b) of the study area |
在赤土店镇北沟河流域内,根据水系和交通将研究区分为北沟河上游区域(A区)、西侧无水系区域(B区)和北沟河下游区域(C区)3个区块,共布设土壤采样点54个(图 2b)(A区20个,B区11个,C区23个),在采样地块采用“X”形或“棋盘”形布设子样点,使用竹铲采取样品,采样深度为0~20 cm,由4~6个子样等量混合组成1个样品,共计1 kg。野外采用GPS定位,填写“采样记录表”,详细记录采样点周围环境状况。土壤样品在室温下自然风干,用木棍碾碎后通过2 mm孔径筛,混匀称重后送实验室分析。
3.2 样品测试与质量控制样品测试在中国地质调查局西安矿产资源调查中心实验室完成,参考《区域地球化学样品分析方法》(DZ/T 0279-2016),根据测区元素组合特征及含量情况,选用8个(包括高、中、低含量)国家一级标准物质(GBW系列),用选定的分析方法,对每个国家一级标准物质分析12次。分别计算每件标准物质每种元素测量值的平均值与标准值之间的对数偏差与每件标准物质每种元素12次测量值与标准值之间的相对标准偏差(RSD),确定分析方法准确度与精密度;选择每种元素低含量的一个标准物质12次测量值,计算3倍的标准偏差作为方法检出限,各元素分析方法质量参数统计见表 1。
![]() |
表 1 分析方法质量参数统计 Table 1 Parameters of quality control of analytical methods |
地累积指数法是Muller(1969)提出用于研究沉积物及其他物质中重金属污染程度的定量评价方法。该方法能够反映土壤重金属污染分布特征,同时考虑人为污染因素、环境地球化学背景值和自然成岩作用的影响(孙厚云等,2022;张浙等,2022),近年来被国内外学者广泛应用于土壤重金属污染评价中(王昌宇等,2021;Li et al.,2022;尹德超等,2022)。与其他单项污染评估方法相比,地累积指数的优点是其评价尺度较为精确(成晓梦等,2022)。
计算公式如下:
![]() |
式中Ci为土壤中重金属元素i的实测含量,Bi为重金属元素i的背景值,K为考虑成岩作用引起环境背景值变动而取的系数,一般取值为1.5,根据地累积指数Igeo将污染水平划分为7级(0~6级),Igeo≤ 0(0级),无污染;0<Igeo ≤1(1级),轻污染;1<Igeo≤ 2(2级),中污染;2<Igeo≤ 3(3级),中—重污染;3<Igeo≤ 4(4级),重污染;4<Igeo≤ 5(5级),重—极重污染;Igeo>5(6级),极重污染。
3.3.2 潜在生态风险评价潜在生态风险法是瑞典科学家Hakanson在1980年提出的,该方法综合考虑了重金属含量、多种元素的生物毒性差异及其加和作用,能综合反映多种重金属对生态环境的潜在影响(秦顺超等,2018),被广泛用于评价重金属污染对生态带来的风险程度和潜在危害,计算公式为:
![]() |
式中:Cfi为元素i的污染系数;Csi为元素i的实测浓度值(mg/kg);Cni为计算所需的参比值;Tri为重金属i的毒性响应系数,具体见表 2(Hakanson,1980);Eri为元素i的潜在生态风险因子;RI为多种重金属的综合潜在生态风险指数,根据Eri和RI值的大小,潜在生态风险指数划分标准见表 3(林荩等,2021)。
![]() |
表 2 重金属毒性响应系数 Table 2 Toxicity response coefficients of heavy metals |
![]() |
表 3 重金属的潜在生态风险指数与生态风险程度 Table 3 Indices and levels of potential ecological risk of heavy metals |
采用USEPA公布的健康风险评估模型选取经口摄入、皮肤接触、呼吸摄入土壤颗粒物三种途径,分别对成人和儿童的健康风险作出评价,相关参数含义如表 4所示,具体参考值来源于《建设用地风险评估技术导则》(HJ25.3-2019)推荐值及国内外相关研究(Fryer et al.,2006;USEPA, 2011, 2013, 2017;成晓梦等,2022),三种途径人体日均土壤重金属暴露量计算公式分别为:
![]() |
![]() |
表 4 人体健康风险评价相关参数取值 Table 4 Parameters values of human health risk assessment |
致癌风险指数非致癌风险指数计算公式分别为:
![]() |
式中Ci为土壤中重金属元素i的实测含量;HQi为重金属元素i的非致癌风险指数;HQn为总非致癌风险指数,当HQ<1时,表示非致癌风险较小可忽略,反之,则表示重金属非致癌风险显著(李春芳等,2018);ADDij为重金属元素i通过j途径摄入重金属剂量;CRi为重金属元素i的致癌风险指数;CRn为总致癌风险指数,其中当CR<10-6时,表示无致癌风险,当10-6<CR<10-4时,表示存在致癌风险,但风险可以接受,当CR> 10-4时,表示致癌风险不可接受(李玉梅等,2017;吴志远等,2020);SFij和RfDij分别为重金属元素i对应j途径的致癌斜率因子和参考剂量;皮肤接触和呼吸摄入的致癌斜率因子和参考剂量采用外推模型,具体计算方法如下:
![]() |
式中SFid和SFib分别为皮肤接触和呼吸摄入重金属元素i的致癌斜率因子,RfDid和RfDib分别为皮肤接触和呼吸摄入重金属的参考剂量,其参考值及相关参数值(表 5)来源于《建设用地风险评估技术导》(HJ25.3-2019)推荐值及相关研究(李有文等,2017;USEPA,2017;屈星辰,2020;张浙等,2022)。
![]() |
表 5 重金属不同暴露途径的参考剂量RfD(mg/(kg·d))和致癌斜率因子SF((kg·d)/mg) Table 5 Reference doses (RfD, mg/(kg·d)) and cancer slope factors (SF, (kg·d)/mg) of heavy metals via different exposure pathways |
研究区农用地土壤pH值在8~9,为弱碱性土壤。土壤重金属含量如图 3所示(作图时为了保持数据整体形态,剔除了A区Hg元素两个异常值,含量分别为0.36 mg/kg和0.37 mg/kg,剔除了B区As元素含量异常值84 mg/kg,C区As元素含量异常值177 mg/kg),参照《土壤环境质量农用地土壤污染风险管控标准》(GB15618-2018,pH>7.5),研究区农田土壤主要超标重金属为Cd、Zn、Pb、Cu,在A区Cd、Zn、Pb含量平均值分别为1.26 mg/kg、334.09 mg/kg、205.6 mg/kg,均超过农用地土壤污染风险筛选值,超标率(表 6)分别为70.0%、45.0%、55.0%,Cu存在少量超标样品,超标率为25%。在B区Cd平均含量为0.85 mg/kg,超过农用地土壤污染风险筛选值,超标率为36.4%,Zn超标率为36.4%,Pb和As均有1个样品超标,其他元素均未超标。C区土壤样品重金属含量平均值均低于农用地土壤污染风险筛选值,整体未超标,仅少量样品超标,主要为Cd和As元素,超标率分别为34.8%和21.7%。以河南省土壤背景值(邵丰收和周皓韵,1998)为参考,Cd、Cu、Zn、Pb含量严重超标,Cd超标8~18倍,Cu超标1~3倍,Zn超标1.8~4.4倍,Pb超标3.1~8.2倍,污染程度较重。Hg、As、Cr、Ni与河南省土壤背景值含量相当,差异较小,表现为轻度超标或未超标。
![]() |
图 3 研究区农田土壤重金属含量箱式图 Fig. 3 Box-plots of heavy metal concentrations in the study area |
![]() |
表 6 研究区农田土壤重金属变异系数和超标情况 Table 6 Coefficients of variation and percentages of sample sites with heavy metal concentrations exceeding the risk screening values in the study area |
变异系数(CV)是概率分布离散程度的一个归一化度量,一般来说离散程度越大,变异系数就越大,表明其分布受人为因素影响程度越大,如化肥农药的施用、工业、交通和矿业污染等均可造成土壤重金属元素的表层富集(王存龙等,2015;柴磊等,2020),变异系数越小,则表明该重金属以自然背景来源为主。研究区内钼矿开采活动密集,车辆交通流量较大,人群生产生活相对集中,可能是主要污染来源,对区域农田土壤重金属分布特征造成影响。根据相关研究对于变异系数大小的分级(戴彬等,2015;孟晓飞等,2022;陈林等,2023),研究区土壤重金属含量变异系数显示(表 6),除了B区的Cr和Ni属于低度变异水平(CV<0.16)外,其他区域的各重金属元素均为中度变异(0.16<CV<0.36)至高度变异(CV > 0.36),其中A区的Hg、B区的Cd和As、C区的Pb和As的变异系数大于1(分别为1.39、1.11、1.23、1.24、1.53),属于强变异水平,说明B区的Cr和Ni主要来源于成土母质,研究区其他各重金属含量变异程度较高,空间离散程度较大,受人为因素影响较大。
土壤重金属来源复杂,受成土母质、矿业开采、交通运输、农业生产、工业制造等多种因素综合影响,其空间分布与其来源具有密切关系。研究区农田土壤重金属含量及空间分布特征显示(图 4),从北沟河上游至下游,Cd、Cu、Zn含量在A、B、C区呈现出大致相同的分布特征,高值点主要分布在A区矿业活动密集区,向下游远离矿业活动整体呈逐渐递减趋势。同时Cd在整个研究区超标均较严重,Cu和Zn的超标点位主要集中在A区,B区和C区相对较少,显示出与Cd空间分布的较大差异性。研究表明(韩张雄,2020;韩张雄等,2021),钼矿一般会与钨、铜、镉、锌、铅等多种矿产伴生,当这些伴生矿产品位太低无法利用或利用难度较大时,就变成了对周围环境具有潜在危害的污染物进入土壤和水体中,造成土壤和水体重金属超标,说明Cd、Cu、Zn可能受矿业活动的影响。由于Cd主要以水溶态、离子交换态和碳酸盐态等占比较高,元素活动性较强,更易于迁移,Cu和Zn以残渣态为主,不容易迁移(崔邢涛等,2015;韩张雄,2020),因此来源于A区矿业开采释放的Cd、Cu和Zn通过水系、大气等进行扩散,Cd由于化学活动性强,迁移相对更远,Cu和Zn更多残留在A区,迁移到B区和C区的相对较少,从而造成Cd的分布相对于Cu和Zn空间差异性更小。综合分析,研究区Cd、Cu、Zn主要来源于钼矿开采引起的重金属扩散迁移。Pb、Hg、As整体含量表现为A区 > C区 > B区,在A区和C区存在少量高值点,在B区含量较低,可能是由于A区为矿业活动区,C区为乡镇聚集区,且靠近县城,人口密集,均受到强烈的人类活动影响,并且A区到C区有水系连接,具有重金属迁移通道,说明Pb、Hg、As可能受矿业活动影响,沿水系扩散迁移(程贤达等,2022),同时受人类生产生活的影响,也会造成一定程度的重金属污染。Cr、Ni分布特征一致,整体含量B区 > C区 > A区,含量变化范围较小,与河南省土壤背景值含量相当,且变异系数较小,说明Cr和Ni主要受成土母质影响。
![]() |
图 4 研究区农田土壤重金属含量空间分布图 Fig. 4 Spatial distribution of heavy metal concentrations in the study area |
以河南省表层土壤背景值为标准,对研究区农田土壤重金属污染开展地累积指数评价(表 7),重金属地累积指数平均值显示Hg、As、Cr、Ni地累积指数均小于1,表现为无污染至轻污染,仅个别样品为中污染至重污染,Cd、Cu、Zn、Pb污染较为严重,在A区、B区、C区Cd、Cu、Zn、Pb地累积指数由高到低均表现为Cd > Pb > Zn > Cu,Cd污染程度最高,所有土壤样品均受到不同程度的Cd污染,在A区Cd元素地累积指数平均值为3.36,为重污染,其中中污染、中—重污染、重污染、重—极重污染样品分别占比15%、20%、30%、35%,在B区和C区Cd元素地累积指数平均值分别为3.34和3.31,均处于中-重污染水平,其中B区54.55%的土壤样品中Cd达到重污染,36.36%为重至极重污染,少量样品为轻污染,C区样品Cd均为中污染至重污染水平。Pb元素地累积指数平均值A区 > C区 > B区,其中A区土壤样品均受到轻度以上Pb污染,中—重污染样品占比最多,B区和C区Pb达到中度污染以下的土壤样品数量较多,少量样品达到中—重污染。Zn主要为轻污染至中—重污染水平,在A区Zn中污染样品最多,少量达到重污染,在B区和C区轻污染样品最多。Cu在A区主要为轻污染和重污染,在B区和C区污染程度相对较轻,以轻污染为主。综上所述,研究区钼矿周边农田土壤重金属主要污染元素为Cd、Pb、Zn、Cu,与邬光海等(2020)研究结果一致,污染程度Cd > Pb > Zn > Cu,在区域上,A区污染程度最高,B区次之,C区相对较低。
![]() |
表 7 土壤重金属污染地累积指数分级 Table 7 The classification of heavy metal pollution based on the geo-accumulation index (Igeo) |
以农用地土壤风险筛选值为标准对研究区农田土壤样品进行潜在生态风险指数评价,计算结果显示(表 8):A区、B区、C区单项生态风险因子除Cd元素外,其余均为轻微生态风险,Cd具有中等—强生态风险,是造成潜在生态风险的主要元素。其中A区存在35%的土壤样品Cd为强生态风险,30.00%的样品Cd为中等生态风险,B区分别有18.81%的土壤样品Cd呈现为中等和强生态风险,C区有26.09%的土壤样品Cd为中等生态风险,其他均为轻微生态风险。潜在生态风险指数RI显示,研究区90.00%以上土壤样品表现为轻微潜在生态风险,最高综合潜在生态风险等级为中等,其中A区达到中等潜在生态风险的样品占比10%,B区为9.09%,C区为4.35%,呈递减趋势,说明在A区由于矿业活动密集,受矿山开发影响严重,造成农田土壤潜在生态风险大于B区和C区,并且距离矿山越远,矿业活动对土壤中重金属造成的影响越弱,形成的潜在生态风险越低。
![]() |
表 8 农田土壤重金属的潜在生态风险指数统计 Table 8 Potential ecological risk of heavy metal in the agricultural soil |
研究区农田土壤重金属在A区、B区、C区的非致癌与致癌健康风险评价结果如表 9所示,整个研究区内不同元素的非致癌健康风险相对大小基本一致,依次为Cr > As > Pb > Ni > Cd > Cu > Zn > Hg,其中儿童单元素非致癌健康风险和总非致癌健康风险均高于成人,这与儿童的行为和生理特征有关,对环境中的污染物更加敏感(高凤杰等,2020;成晓梦等,2022),与前人研究结果一致(Pan et al.,2018;屈星辰等,2020;林荩等,2021)。同时各元素在不同暴露途径下的非致癌健康风险指数和总非致癌健康风险指数均小于1,表明研究区农田土壤重金属对儿童和成人均不会产生非致癌健康风险。从暴露途径来看,成人Cd的呼吸途径非致癌风险高于手口和皮肤摄入途径,儿童由于其特殊的行为习惯,Cd通过手口摄入途径的非致癌健康风险高于呼吸和皮肤摄入。Cu、Zn、Pb、As对成人和儿童的非致癌风险主要通过手口摄入途径,Hg、Cr、Ni非致癌风险主要来自于皮肤接触途径。在儿童和成人的总非致癌风险中,A区、B区、C区的HQcr、HQAs、HQPb均高于其他元素1个数量级,因此Cr、As、Pb是研究区农田土壤重金属非致癌风险最主要的贡献元素,与李有文等(2017, 2020)研究结果一致。结合土壤中重金属含量特征,B区和C区土壤中Cr含量高于A区,As和Pb含量相当,差异较小,因此造成B区和C区的非致癌总风险略高于A区,Cd、Zn虽然是主要污染元素,并且在A区富集明显,但由于绝对含量较低,对非致癌总风险影响较小。
![]() |
表 9 研究区农田土壤健康风险指数 Table 9 Human health risk of heavy metals in the agricultural soil of study area |
Cd、As、Cr、Ni是被国际癌症研究机构(IARC)确定的致癌物(刘洋等,2022),且根据USEPA对有毒污染物的分类,仅Cd、As、Cr和Ni有致癌斜率因子,因此本研究只评估这4种重金属暴露可能产生的致癌风险。研究区农田土壤重金属致癌健康风险指数从大到小依次为Ni > Cr > As > Cd,所有样品各元素单项致癌风险指数和总致癌风险指数均小于1×10-4,未超过最大可接受水平,属于可接受风险水平,其中儿童致癌风险指数高于成人,说明研究区成人和儿童受农田土壤重金属暴露影响虽然有患癌症的风险,并且儿童患癌症的风险相比于成人更高,但致癌风险较低,属于可接受风险范围。通过区域对比发现,成人和儿童Cd元素通过手口、皮肤、呼吸三种途径造成的总致癌风险从研究区上游A区到下游C区逐渐降低,与Cd污染程度空间变化特征一致,但其致癌风险小于污染程度更低的As、Cr和Ni元素,说明对污染程度贡献大的元素,例如Cd元素,由于其属于分散元素,绝对含量显著低于Cr、Ni和As,导致其出现致癌风险的概率较低,从而不一定具有更高的健康风险(Liu et al.,2018;Wang et al.,2020)。
5 结论(1)研究区农田土壤中Cd、Pb、Zn、Cu含量超过农用地土壤污染风险筛选值,在空间分布上,Cd、Zn、Pb、Cu受矿业活动的影响从A区到C区含量和超标率逐渐降低,Hg、As主要受人类活动影响,仅在局部点位超标,Cr、Ni主要来源于成土母质,整体未超标。
(2)Cd、Pb、Zn、Cu是研究区农田土壤主要污染元素,污染程度依次为Cd > Pb > Zn > Cu,以Cd污染程度最高,在A区以重—极重污染为主,在B区和C区以中污染为主,Pb、Zn、Cu在A区以中污染至中—重污染为主,在B区和C区以轻污染至中污染为主,A区总体污染程度最高,B区次之,C区相对较低。
(3)研究区农田土壤重金属以轻微潜在生态风险为主,最高潜在生态风险等级为中等,从A区到C区潜在生态风险呈递减趋势,其中Cd是造成潜在生态风险的主要元素,达到中等—强生态风险。
(4)研究区农田土壤重金属非致癌健康风险指数小于1,致癌健康风险指数小于1×10-4,成人和儿童在农田土壤重金属的影响下患非致癌疾病和癌症的风险均较低,在可接受风险范围内,其中儿童的致癌和非致癌健康风险指数均高于成人,说明儿童更易于受到重金属影响。
Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Mingshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625-1636 (in Chinese with English abstract). |
Cai Kui, Duan Yamin, Luan Wenlou, Li Qian, Ma Yunchao. 2016. Geochemical behavior of heavy metals Pb and Hg in the farmland soil of Hebei plain[J]. Geology in China, 43(4): 1420-1428 (in Chinese with English abstract). |
Chai Lie, Wang Xin, Ma Liang, Cheng Zhenxiang, Su Limin, Wang Yuhong. 2020. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models[J]. China Environmental Science, 40(9): 3919-3929 (in Chinese with English abstract). |
Chen Hang, Wang Ying, Wang Shu. 2022. Source analysis and pollution assessment of heavy metals in farmland soil around Tongshan mining area[J]. Environmental Science, 43(5): 2719-2731 (in Chinese with English abstract). |
Chen Lin, Ma Kun, Ma Jianjun, Wang Jinbao, Li Hong, Jia Biao, Ni Xilu, Ma Jinpeng, Liang Xiangyu. 2022. Risk assessment and sources of heavy metals in farmland soils of Yellow River irrigation area of Ningxia[J]. Environmental Science, 44(1): 356-366 (in Chinese with English abstract). |
Chen Zhenyu, Zhao Yuanyi, Chen Danli, Huang Haitao, Zhao Yu, Wu Yujing. 2023. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China[J]. China Geology, 6: 15-26. |
Cheng Xianda, Sun Jianwei, Jia Xu, Shang Liannan, Zhang Long, Sun Yake. 2022. Pollution and source apportionment of heavy metals in the farmland soils of the gold mining area in Tantou Basin, metallogenic belt in western Henan[J]. East China Geology, 43(3): 313-323 (in Chinese with English abstract). |
Cheng Xiaomeng, Sun Binbin, Wu Chao, He Ling, Zeng Daoming, Zhao Chen. 2022. Heavy metal concentration characteristics and health risks of farmland soils in typical pyrite mining area of the central Zhejiang Province, China[J]. Environmental Science, 43(1): 442-453 (in Chinese with English abstract). |
Cui Xingtao, Wang Xueqiu, Luan Wenlou. 2015. An analysis of modes of occurrence and biological availability of the heavy metal elements in soil of the central and southern plain in Hebei[J]. Geology in China, 42(2): 655-663 (in Chinese with English abstract). |
Dai Bin, Lü Jianshu, Zhan Jincheng, Zhang Zulu, Liu Yang, Zhou Rujia. 2015. Assessment of sources, spatial ristribution and rcological risk of heavy metals in soils in a typical industry-based city of Shandong Province, eastern China[J]. Environmental Science, 36(2): 507-515 (in Chinese with English abstract). |
Fryer M, Collins C D, Ferrier H, Colvile R N, Nieuwenhuijsen M J. 2006. Human exposure modelling for chemical risk assessment: A review of current approaches and research and policy implications[J]. Environmental Science & Policy, 9(3): 261-274. |
Gao Fengjie, Wang Xin, Han Jing, Liu Meimei, Guo Xinxin. 2020. Heavy metal pollution characteristics and its health risk assessment in a mollisol watershed of Northeast China: Taking Haigou watershed as study case[J]. Journal of China Agricultural University, 25(8): 73-83 (in Chinese with English abstract). |
Hakanson L. 1980. An ecological risk index for aquatic pollution control a sedimentological approach[J]. Water Research, 14(8): 975-1001. DOI:10.1016/0043-1354(80)90143-8 |
Han Zhangxiong. 2020. Study on the Pollution Characteristics and the Immobilization of Associated Pb, Cd in Molybdenum Mine—Taking a Molybdenum Mine in Luonan as an Example[D]. Northwest A & F University (in Chinese with English abstract).
|
Han Zhangxiong, Li Min, Mei Jun, Duan Ailing, Yang Shujun. 2021. A review on the ecological geochemical behavior of associated heavy metals in molybdenum ore area[J]. Non-Ferroous Mining and Metallurgy, 37(4): 7-10, 6 (in Chinese with English abstract). |
Li Chunfang, Cao Jianfei, Lü Jianshu, Yao Lei, Wu Quanyuan. 2018. Ecological risk assessment of soil heavy metals for different type of land use and evaluation of human health[J]. Environmental Science, 39(12): 5628-5638 (in Chinese with English abstract). |
Li D X, Liu G N, Li X S, Li R P, Wang J, Zhao Y Y. 2022. Heavy metal(loid)s pollution of agricultural soils and health risk assessment of consuming soybean and wheat in a typical non-ferrous metal mine area in Northeast China[J]. Sustainability, 14(5): 2953-2967. DOI:10.3390/su14052953 |
Li Wanning. 2021. Occurrence State and Geochemical Characteristics of Rhenium in Molybdenite Of Nannihu-Sandaozhuang Molybdenum Deposit[D]. Shijiazhuang: Hebei GEO University (in Chinese with English abstract).
|
Li Youwen, Cai Jixiang, Li Zhuoqing, Wang Doudou, Gao Yu, Dong Zhibin, Zha Xianghao. 2020. Heavy metal pollution and human health risk assessment of school soils in Kashgar City, Xinjiang, China[J]. Journal of Environment and Health, 37(2): 148-151 (in Chinese with English abstract). |
Li Youwen, Wang Jing, Ju Tianzhen, Wang Li, Lin Ning, Zhang Shengnan, Zha Xianghao. 2017. Heavy metal pollution characteristics and human health risk assessment in soils from different functional areas of Baiyin, Gansu, China[J]. Chinese Journal of Ecology, 36(5): 1408-1418 (in Chinese with English abstract). |
Li Yumei, Li Haipeng, Zhang Lianke, Jiao Kunling, Sun Peng, Wang Weida. 2017. Contamination and health risk assessment of heavy metals in soil surrounding an aluminum factory in Baotou, China[J]. Environmental Monitoring in China, 33(1): 88-96 (in Chinese with English abstract). |
Lin Jin, Liang Wenjing, Jiao Yang, Yang Li, Fan Yaning, Tian Tao, Liu Xiaomeng. 2021. Ecolcgical and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shaanxi Province[J]. Geology in China, 48(3): 749-763 (in Chinese with English abstract). |
Liu J, Liu Y J, Liu Y, Liu Z, Zhang A N. 2018. Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China[J]. Ecotoxicology and Environmental Safety, 164: 261-269. DOI:10.1016/j.ecoenv.2018.08.030 |
Liu Yang, He Chaohui, Niu Xuekui, Zhang Di, Pan Bo. 2022. Health risk assessment of soil heavy metals in a small watershed of mining area in Yunnan[J]. Environmental Science, 43(2): 936-945 (in Chinese with English abstract). |
Meng Miaofei, Guo Junmei, Yang Junxing, Zheng Guodi, Chen Tongbin, Liu Jie. 2022. Distribution characteristics and risk assessment of heavy metal pollution in farmland soils and crops in Luancheng, Shijiazhuang City[J]. Environmental Science, 43(9): 4779-4790 (in Chinese with English abstract). |
Muller G. 1969. Index of geoaccumulation in sediments of the Rhime River[J]. Geological Journals, 2: 109-118. |
Pan L B, Wang Y, Ma J, Hu Y, Su B Y, Fang G L, Wang L, Xiang B. 2018. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research, 25(2): 1055-1069. DOI:10.1007/s11356-017-0513-1 |
Qin Shunchao, Zhang Huanzhen, Guo Wei, Li Haiyang. 2018. Progress of assessment methods of heavy metal pollution in soil[J]. Environmental Engineering, 36: 726-730 (in Chinese with English abstract). |
Qu Xingchen. 2020. Ecological and Health Risk Assessment of Heavy Metal Pollution in Farmland Soil of Xianghe County[D]. Beijing: Beijing Forestry University (in Chinese with English abstract).
|
Shao Fengshou, Zhou Haoyun. 1998. Soil environmental background values of main elements in Henan Province[J]. Henan Agriculture, 10: 28 (in Chinese with English abstract). |
Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Zhang Huiqiong, Yin Zhiqiang. 2022. An overview of evaluation criteria and model for heavy metal pollution ecological risk in small-scale drainage catchment of mountainous area[J]. Geology in China, 50(1): 36-51 (in Chinese with English abstract). |
Tang Canhui, Zhang Shouting, Zhang Yunhui, Cao Huawen, Tang Li, Chen Huijun, Xu Teng, Wu Zonglin. 2015. Compositional Characteristics of Biotites from Nannihu and Shangfanggou Granites in the Luanchuan Ore Belt, Henan Province, and its Significance for Petrogenesis and Metallogeny[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 539-545 (in Chinese with English abstract). |
USEPA. 2011. Exposure Factors Handbook[R]. Washington, DC: Environment Protection Agency.
|
USEPA. 2013. Regional Screening Level (RSL) for Chemical Contaminants at Superfund Sites[R]. Washington, DC: U.S. Environmental Protection Agency.
|
USEPA. 2017. Regional screening levels (RSLs)-generic tables [EB/OL]. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables.
|
Wang Changyu, Zhang Surong, Liu Jihong, Xing Yi, Li Mingze, Liu Qingxue. 2021. Pollution level and risk assessment of heavy metals in a metal smelting area of Xiong'an New District[J]. Geology in China, 48(6): 1697-1709 (in Chinese with English abstract). |
Wang Cunlong, Zeng Xiandong, Liu Huafeng, Yang Liyuan, Pang Xugui. 2015. The present situation of soil environmental quality and the distribution and migration regularity of heavy metals in soil of Yantai[J]. Geology in China, 42(1): 317-330 (in Chinese with English abstract). |
Wang F F, Guan Q Y, Tian J, Lin J K, Yang Y Y, Yang L Q, Pan N G. 2020. Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor[J]. Catena, 191: 104573. DOI:10.1016/j.catena.2020.104573 |
Weng Jichang, Pan Junzhan, Li Wenzhi, Wang Huijun. 2010. Ore material composition and ore-forming stage division of the Sandaozhuang superlarge molybdenum-tungsten ore deposit in Luanchuan[J]. Geophysical & Geochemical Exploration, 34(2): 170-175 (in Chinese with English abstract). |
Wu Guanghai, Wang Chensheng, Chen Honghan. 2020. Eco- environmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten- molybdenum mine area in Inner Mongolia[J]. Geology in China, 47(6): 1838-1852 (in Chinese with English abstract). |
Wu Zhiyuan, Zhang Lina, Xia Tianxiang, Jia Xiaoyang, Li Huiying, Wang Shijie. 2020. Quantitative assessment of human health risks based on soil heavy metals and PAHs sources: Take a polluted industrial site of Beijing as an example[J]. Environmental Science, 41(9): 4180-4196 (in Chinese with English abstract). |
Yang Yongfei, Li Nuo, Yang Yan. 2009. Fluid inclusion study of the Nannihu porphyry Mo-W deposit, Luanchuan Cunty, Henan province[J]. Atca Petrologica Sinca, 25(10): 2550-2562 (in Chinese with English abstract). |
Yin Dechao, Qi Xiaofan, Wang Yushan, Xu Rongzhen, An Yonghui, Wang Xuqing, Geng Hongjie. 2022. Geochemical characteristics and ecological risk assessment of heavy metals in surface sediments of Baiyangdian Lake, Xiong'an New Area[J]. Geology in China, 49(3): 979-992 (in Chinese with English abstract). |
Yu Tao, Jiang Tianyu, Liu Xu, Ma Xudong, Yang Zhongfang, Hou Qingye, Xia Xueqi, Li Fengyan. 2021. Research progress in current status of soil heavy metal pollution and analysis technology[J]. Geology in China, 48(2): 460-476 (in Chinese with English abstract). |
Zhang Jianghua, Xu Youning, Chen Huaqing, Ke Hailing, Qiao Gang. 2020. Comparative study of the accumulated effect of heavy metals on soils and wheat in Xiaoqingling gold mining area[J]. Northwestern Geology, 3(3): 284-294 (in Chinese with English abstract). |
Zhang Jianghua, Xu Youning, Wu Yaoguo. 2019. Health risk assessment of heavy metals in wheat and maize in the Xiaoqingling gold mining area[J]. Acta Geologica Sinica, 93(2): 501-508 (in Chinese with English abstract). |
Zhang Q C, Wang C C. 2020. Natural and human factors affect the distribution of soil heavy metal pollution: A review[J]. Water Air Soil Pollution, 231(7): 350-362. DOI:10.1007/s11270-020-04728-2 |
Zhang Zhe, Lu Ran, Wu Siyang, Jia Zhibin, Wang Ning. 2022. Heavy metal pollution and health risk assessment of mine soil in Yangtze River Economic Belt[J]. Environmental Science, 43(7): 3763-3772 (in Chinese with English abstract). |
鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625-1636. DOI:10.12029/gc20200602 |
蔡奎, 段亚敏, 栾文楼, 李倩, 马云超. 2016. 河北平原农田土壤重金属元素Pb、Hg地球化学行为的影响因素[J]. 中国地质, 43(4): 1420-1428. DOI:10.12029/gc20160425 |
柴磊, 王新, 马良, 成震香, 苏利民, 王宇红. 2020. 基于PMF模型的兰州耕地土壤重金属来源解析[J]. 中国环境科学, 40(9): 3919-3929. |
陈航, 王颖, 王澍. 2022. 铜山矿区周边农田土壤重金属来源解析及污染评价[J]. 环境科学, 43(5): 2719-2731. |
陈林, 马琨, 马建军, 王金保, 李虹, 贾彪, 倪细炉, 马进鹏, 梁翔宇. 2023. 宁夏引黄灌区农田土壤重金属生态风险评价及来源解析[J]. 环境科学, 44(1): 356-366. |
程贤达, 孙建伟, 贾煦, 商连南, 张龙, 孙亚柯. 2022. 豫西成矿带潭头盆地金矿区农田土壤重金属污染及来源解析[J]. 华东地质, 43(3): 313-323. |
成晓梦, 孙彬彬, 吴超, 贺灵, 曾道明, 赵辰. 2022. 浙中典型硫铁矿区农田土壤重金属含量特征及健康风险[J]. 环境科学, 43(1): 442-453. DOI:10.13227/j.hjkx.202102161 |
崔邢涛, 王学求, 栾文楼. 2015. 河北中南部平原土壤重金属元素存在形态及生物有效性分析[J]. 中国地质, 42(2): 655-663. DOI:10.12029/gc20150223 |
戴彬, 吕建树, 战金成, 张祖陆, 刘洋, 周汝佳. 2015. 山东省典型工业城市土壤重金属来源、空间分布及潜在生态风险评价[J]. 环境科学, 36(2): 507-515. DOI:10.13227/j.hjkx.2015.02.018 |
高凤杰, 王鑫, 韩晶, 刘媚媚, 郭欣欣. 2020. 东北黑土区小流域耕地土壤重金属污染特征及健康风险评价: 以海沟河小流域为例[J]. 中国农业大学学报, 25(8): 73-83. |
韩张雄. 2020. 钼矿区污染特征及伴生Pb、Cd的稳定化研究——以洛南某钼矿区为例[D]. 西北农林科技大学.
|
韩张雄, 李敏, 梅军, 端爱玲, 杨树俊. 2021. 钼矿区伴生重金属生态地球化学行为研究评述[J]. 有色矿冶, 37(4): 7-10, 6. |
李春芳, 曹见飞, 吕建树, 姚磊, 吴泉源. 2018. 不同土地利用类型土壤重金属生态风险与人体健康风险[J]. 环境科学, 39(12): 5628-5638. |
李婉宁. 2022. 南泥湖-三道庄钼矿床辉钼矿中铼的赋存状态及地球化学特征[D]. 石家庄: 河北地质大学.
|
李有文, 蔡吉祥, 李卓晴, 王豆豆, 高羽, 董志斌, 查向浩. 2020. 喀什市学校土壤重金属污染及健康风险[J]. 环境与健康杂志, 37(2): 148-151. DOI:10.16241/j.cnki.1001-5914.2020.02.012 |
李有文, 王晶, 巨天珍, 王莉, 林宁, 张胜楠, 查向浩. 2017. 白银市不同功能区土壤重金属污染特征及其健康风险评价[J]. 生态学杂志, 36(5): 1408-1418. DOI:10.13292/j.1000-4890.201705.015 |
李玉梅, 李海鹏, 张连科, 焦坤灵, 孙鹏, 王维大. 2017. 包头某铝厂周边土壤重金属污染及健康风险评价[J]. 中国环境监测, 33(1): 88-96. DOI:10.19316/j.issn.1002-6002.2017.01.14 |
林荩, 梁文静, 焦旸, 杨莉, 范亚宁, 田涛, 刘晓萌. 2021. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 48(3): 749-763. DOI:10.12029/gc20210306 |
刘洋, 何朝辉, 牛学奎, 张迪, 潘波. 2022. 云南某矿区小流域土壤重金属健康风险评价[J]. 环境科学, 43(2): 936-945. |
孟晓飞, 郭俊娒, 杨俊兴, 郑国砥, 陈同斌, 刘杰. 2022. 石家庄市栾城区农田土壤重金属分布特征及作物风险评价[J]. 环境科学, 43(9): 4779-4790. |
秦顺超, 张焕祯, 郭伟, 李海洋. 2018. 土壤重金属污染评价方法研究进展[J]. 环境工程, 36: 726-730. |
屈星辰. 2020. 香河县农田土壤重金属污染生态与健康风险评价[D]. 北京: 北京林业大学.
|
邵丰收, 周皓韵. 1998. 河南省主要元素的土壤环境背景值[J]. 河南农业, 10: 28. |
孙厚云, 卫晓锋, 孙晓明, 张会琼, 殷志强. 2022. 山区小流域矿集区土壤重金属污染生态风险评价基准与模型[J]. 中国地质, 50(1): 36-51. DOI:10.12029/gc20200916001 |
唐灿辉, 张寿庭, 张云辉, 曹华文, 唐利, 陈慧军, 许腾, 武宗林. 2015. 河南栾川南泥湖和上房沟花岗岩体黑云母成分特征及其成岩成矿意义[J]. 矿物岩石地球化学通报, 34(3): 539-545. |
王昌宇, 张素荣, 刘继红, 邢怡, 李名则, 刘庆学. 2021. 雄安新区某金属冶炼区土壤重金属污染程度及风险评价[J]. 中国地质, 48(6): 1697-1709. |
王存龙, 曾宪东, 刘华峰, 杨丽原, 王红晋, 庞绪贵. 2015. 烟台市土壤环境质量现状及重金属元素分布迁移规律[J]. 中国地质, 42(1): 317-330. DOI:10.12029/gc20150125 |
瓮纪昌, 潘军占, 李文智, 汪慧军. 2010. 栾川三道庄特大型钼钨矿床矿石物质成分及成矿阶段划分[J]. 物探与化探, 34(2): 170-175. |
邬光海, 王晨昇, 陈鸿汉. 2020. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 47(6): 1838-1852. DOI:10.12029/gc20200619 |
吴志远, 张丽娜, 夏天翔, 贾晓洋, 李慧颖, 王世杰. 2020. 基于土壤重金属及PAHs来源的人体健康风险定量评价: 以北京某工业污染场地为例[J]. 环境科学, 41(9): 4180-4196. |
杨永飞, 李诺, 杨艳. 2009. 河南省栾川南泥湖斑岩型钼钨矿床流体包裹体研究[J]. 岩石学报, 25(10): 2550-2562. |
尹德超, 祁晓凡, 王雨山, 徐蓉桢, 安永会, 王旭清, 耿红杰. 2022. 雄安新区白洋淀表层沉积物重金属地球化学特征及生态风险评价[J]. 中国地质, 49(3): 979-992. DOI:10.2029/gc20220321 |
余涛, 蒋天宇, 刘旭, 马旭东, 杨忠芳, 侯青叶, 夏学齐, 李凤嫣. 2021. 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 48(2): 460-476. DOI:10.12029/gc20210208 |
张江华, 徐友宁, 陈华清, 柯海玲, 乔冈. 2020. 小秦岭金矿区土壤-小麦重金属累积效应对比研究[J]. 西北地质, 53(3): 284-294. DOI:10.19751/j.cnki.61-1149/p.2020.03.026 |
张江华, 徐友宁, 吴耀国. 2019. 小秦岭金矿区小麦和玉米重金属的健康风险评价[J]. 地质学报, 93(2): 501-508. |
张浙, 卢然, 伍思扬, 贾智彬, 王宁. 2022. 长江经济带矿山土壤重金属污染及健康风险评价[J]. 环境科学, 43(7): 3763-3772. |